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ECL 4340

POWER SYSTEMS

LECTURE 19
ECONOMIC DISPATCH

ANNOUNCEMENTS

 Be reading Chapter 6, sections 6.12 & 6.13. 

 HW 9 is due November 11, Friday.  

 HW 10 is posted, due November 18, Friday.  

GENERATION DISPATCH

• Since the load is variable and there must be enough 
generation to meet the load, almost always there is more 
generation capacity available than load

• Optimally determining which generators to use can be a 
complicated task due to many different constraints:
 For generators with low or no cost fuel (e.g., wind and solar 

PV) it is “use it or lose it”

 For others like hydro there may be limited energy for the year 

 Some fossil has shut down and start times of many hours

• Economic dispatch looks at the best way to 
instantaneously dispatch the generation
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GENERATOR TYPES

• Traditionally utilities have had three broad groups 
of generators
 baseload units: large coal/nuclear; always on at max.

 midload units: smaller coal that cycle on/off daily

 peaker units: combustion turbines used only for several 
hours during periods of high demand

Wind and solar
PV can be 
quite variable;
usually they are
operated at max.
available power 4

UTILITY-SCALE GENERATOR

CAPACITY ADDITIONS IN THE US
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US ELECTRICITY GENERATION

BY FUEL TYPE

Source: www.eia.gov/totalenergy/data/monthly/pdf/sec7_4.pdf

In first half of 2017, wind was 
7.2% and  solar was 1.3%
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DISTRIBUTION OF WIND

POWER PLANTS
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THE CHALLENGE OF WIND

DISPATCH

Image shows wind output for a month in California by hour and day

Source: www.megawattsf.com/gridstorage/gridstorage.htm

THERMAL VERSUS HYDRO

GENERATION

• The two main types of generating units are thermal 
and hydro, with wind rapidly growing

• For hydro the fuel (water) is free, but there may be 
many constraints on operation:
 fixed amounts of water available

 reservoir levels must be managed and coordinated

 downstream flow rates for fish and navigation

• Hydro optimization is typically longer term (many 
months or years)
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BLOCK DIAGRAM OF

THERMAL UNIT

To optimize generation costs we need to develop
cost relationships between net power out and operating
costs.  Between 2-6% of power is used within the
generating plant; this is known as the auxiliary power. 10

MODERN COAL PLANT

Source: Masters, Renewable and Efficient Electric Power Systems, 2004 11

TURBINE FOR NUCLEAR POWER PLANT

Source: http://images.pennnet.com/articles/pe/cap/cap_gephoto.jpg 12
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BASIC GAS TURBINE

Compressor

Fuel
100%

Fresh
 air

Combustion
   chamber

Turbine

Exhaust
gases 67%

Generator

  AC
Power
  33%

1150 oC

550 oC

Most common fuel is natural gas Maximum Efficiency

550 273
1 42%

1150 273


  

Typical efficiency is around 30 to 35%
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COMBINED CYCLE POWER PLANT

Efficiencies of up to 60% can be achieved, with even higher
values when the steam is used for heating.  Fuel is usually natural gas.14

GENERATOR COST CURVES

• Generator costs are typically represented by up to 
four different curves
 input/output (I/O) curve

 fuel-cost curve

 heat-rate curve

 incremental cost curve

• For reference
 1 Btu (British thermal unit) = 1054 J

 1 MBtu = 1x106 Btu

 1 MBtu = 0.293 MWh

 3.41 Mbtu = 1 MWh 15
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I/O CURVE

• The IO curve plots fuel input (in MBtu/hr) versus 
net MW output.

•

16

FUEL-COST CURVE

• The fuel-cost curve is the I/O curve scaled by fuel 
cost.  A typical cost for coal is $ 1.70/Mbtu.

17

HEAT-RATE CURVE

• Plots the average number of MBtu/hr of fuel input 
needed per MW of output.

• Heat-rate curve is the I/O curve scaled by MW

Best for most efficient units are
around 9.0
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INCREMENTAL (MARGINAL) COST CURVE

• Plots the incremental $/MWh as a function of MW.

• Found by differentiating the cost curve

19

MATHEMATICAL FORMULATION OF COSTS

• Generator cost curves are usually not smooth.  
However the curves can usually be adequately 
approximated using piece-wise smooth, functions.

• Two representations predominate:
 quadratic or cubic functions

 piecewise linear functions

• We’ll assume a quadratic presentation:
2( ) $/hr (fuel-cost)

( )
( ) 2 $/MWh 

i Gi i Gi Gi

i Gi
i Gi Gi

Gi

C P P P

dC P
IC P P

dP

  

 

  

  
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COAL USAGE EXAMPLE 1
• A 500 MW (net) generator is 35% efficient. It is 

being supplied with Western grade coal, which 
costs $1.70 per MBtu and has 9000 Btu per pound.  
What is the coal usage in lbs/hr?  What is the cost?

At 35% efficiency, the required fuel input per hour is

500 MWh 1428 MWh 1 MBtu 4924 MBtu
hr 0.35 hr 0.29 MWh hr

4924 MBtu 1 lb 547,111 lbs
hr 0.009MBtu hr

4924 MBtu $1.70
Cost = 8,370.8 $/hr or $16.74/MWh

hr MBtu

  


 

 
21
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COAL USAGE EXAMPLE 2

• Assume a 100W lamp is left on by mistake for 8 
hours, and that the electricity is supplied by the 
previous coal plant and that transmission and 
distribution losses are 20%.  How coal has been used?

With 20% losses, a 100W load on for 8 hrs requires 

1 kWh of energy.  With 35% gen. efficiency this requires

1 kWh 1 MWh 1 MBtu 1 lb
1.09 lb

0.35 1000 kWh 0.29 MWh 0.009MBtu
   

22

INCREMENTAL COST EXAMPLE

2
1 1 1 1

2
2 2 2 2

1 1
1 1 1

1

2 2
2 2 2

2

For a two generator system assume

( ) 1000 20 0.01 $ /

( ) 400 15 0.03 $ /

Then

( )
( ) 20 0.02 $/MWh

( )
( ) 15 0.06 $/MWh

G G G

G G G

G
G G

G

G
G G

G

C P P P hr

C P P P hr

dC P
IC P P

dP

dC P
IC P P

dP

  

  

  

  

23

INCREMENTAL COST EXAMPLE, CONT'D

G1 G2

2
1

2
2

1

2

If P 250 MW and P 150 MW Then

(250) 1000 20 250 0.01 250 $ 6625/hr

(150) 400 15 150 0.03 150 $6025/hr

Then

(250) 20 0.02 250 $ 25/MWh

(150) 15 0.06 150 $ 24/MWh

C

C

IC

IC

 

     

     

   
   
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ECONOMIC DISPATCH: FORMULATION

• The goal of economic dispatch is to determine the 
generation dispatch that minimizes the 
instantaneous operating cost, subject to the 
constraint that total generation = total load + losses

T
1

m

i=1

Minimize C ( )

Such that

m

i Gi
i

Gi D Losses

C P

P P P



 





 Initially we’ll 
ignore generator
limits and the
losses

25

UNCONSTRAINED MINIMIZATION

• This is a minimization problem with a single 
equality constraint

• For an unconstrained minimization a necessary (but 
not sufficient) condition for a minimum is the 
gradient of the function must be zero, 

• The gradient generalizes the first derivative for 
multi-variable problems:

1 2

( ) ( ) ( )
( ) , , ,

nx x x

   
     

f x f x f x
f x  

( ) f x 0

26

MINIMIZATION WITH EQUALITY CONSTRAINT

• When the minimization is constrained with an 
equality constraint, we can solve the problem using 
the method of Lagrange Multipliers

• Key idea is to modify a constrained minimization 
problem to be an unconstrained problem

That is, for the general problem 

minimize ( )      s.t. ( )  

We define the Lagrangian    L( , ) ( ) ( )

Then a necessary condition for a minimum is the

L ( , ) 0 and L ( , ) 0

T



 

   x λ

f x g x  0

x λ f x λ g x

x λ x λ 27
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ECONOMIC DISPATCH LAGRANGIAN

G
1 1

G

For the economic dispatch we have a minimization 

constrained with a single equality constraint

L( , ) ( ) ( )   (no losses)

The necessary conditions for a minimum are

L( , )

m m

i Gi D Gi
i i

Gi

C P P P

dC
P

 



 
  






 P

P

1

( )
0    (for  1 to )

0

i Gi

Gi

m

D Gi
i

P
i m

dP

P P





  

 
28

Equal lambda criteria

ECONOMIC DISPATCH EXAMPLE

D 1 2

2
1 1 1 1

2
2 2 2 2

1 1

1

What is economic dispatch for a two generator 

system: P 500 MW  and

( ) 1000 20 0.01 $ /

( ) 400 15 0.03 $ /

Using the Largrange multiplier method we know

( )
20

G G

G G G

G G G

G

G

P P

C P P P hr

C P P P hr

dC P
dP



  

  

  

   1

2 2
2

2

1 2

0.02 0

( )
15 0.06 0

500 0

G

G
G

G

G G

P

dC P
P

dP

P P



 

 

    

  
29

ECONOMIC DISPATCH EXAMPLE, CONT’D

1

2

1 2

1

2

1

2

We therefore need to solve three linear equations

20 0.02 0

15 0.06 0

500 0

0.02 0 1 20

0 0.06 1 15

1 1 0 500

312.5 MW

187.5 MW

26.2 $/MW

G

G

G G

G

G

G

G

P

P

P P

P

P

P

P








  

  

  

      
            
            

 
   
   h

 
 
 
   30
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LAMBDA-ITERATION SOLUTION METHOD

• The direct solution only works well if the 
incremental cost curves are linear and no generators 
are at their limits

• A more general method is known as the Lambda-
iteration
 the method requires that there be a unique mapping 

between a value of Lambda and each generator’s MW 
output

 the method then starts with values of Lambda below and 
above the optimal value, and then iteratively brackets the 
optimal value 31

LAMBDA-ITERATION ALGORITHM

L H

m m
L H

Gi Gi
i=1 i=1

H L

M H L

m
M H M

Gi
i=1

L M

Pick  and  such that

P ( ) 0     P ( ) 0

While   ,  Do

( ) / 2

If P ( ) 0,  Then 

Else 

End While

D D

D

P P

P

 

 

  

  

  

 

   

 

 

  



 



32

LAMBDA-ITERATION: GRAPHICAL VIEW

In the graph shown below for each value of Lambda, 
there is a unique PGi for each generator.  This 
relationship is the PGi() function.  
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LAMBDA-ITERATION EXAMPLE

1 1 1

2 2 2

3 3 3

1 2 3

Consider a three generator system with

( ) 15 0.02 $/MWh

( ) 20 0.01 $/MWh

( ) 18 0.025 $/MWh

and with constraint 1000MW

G G

G G

G G

G G G

IC P P

IC P P

IC P P

P P P





  

  

  

  

34

Gi

G1 G2

G3

Rewriting as a function of , P ( ),  we have

15 20
P ( ) P ( )

0.02 0.01
18

P ( )
0.025

 
  



 
 




LAMBDA-ITERATION EXAMPLE, CONT’D

m
 H 

Gi
i=1

m

Gi
i=1

 

1

H 

1

Pick  & so P ( ) 1000 0 and 

P ( ) 1000 0

Try  20, then (20) 1000 

15 20 18
1000 670 MW   < 0

0.02 0.01 0.025

Try  30, then (30) 1000 1230 MW   > 0

L L

H

m
L

Gi
i

m

Gi
i

P

P

  





  







 

 

  

      

  








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LAMBDA-ITERATION EXAMPLE, CONT’D

1

Pick convergence tolerance   0.05 $/MWh 

Then, iterate since 0.05

( ) / 2 25

Then since (25) 1000 280 0,  we set 25

H L

M H L

m
H

Gi
i

P



 

  






 

  

   

36
1

Since 25 20 0.05

(25 20) / 2 22.5

(22.5) 1000 195 0,  we set 22.5

M

m
L

Gi
i

P






 

  

    
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LAMBDA-ITERATION EXAMPLE, CONT’D

H

*

Continue iterating until 0.05

The solution value of , ,  is 23.53 $/MWh

L 

 

 

37

*
Gi

G1

G2

G3

Once  is known we can calculate the P

23.53 15
P (23.5) 426 MW

0.02
23.53 20

P (23.5) 353 MW
0.01

23.53 18
P (23.5) 221 MW

0.025




 


 


 

GENERATOR MW LIMITS

• Generators have limits on the minimum and 
maximum amount of power they can produce

• Often times, the minimum limit is not zero.  
This represents a limit on the generator’s 
operation with the desired fuel type

• Because of varying system economics 
usually many generators in a system are 
operated at their maximum MW limits.  

38

LAMBDA-ITERATION WITH GEN LIMITS

Gi

Gi ,max Gi ,max

Gi ,min Gi ,min

In the Lambda-iteration method, the limits are taken

into account when calculating P ( ) :

if P ( )  then P ( )

if P ( )  then P ( )

Gi Gi

Gi Gi

P P

P P


 

 

 

 
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