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ECL 4340

POWER SYSTEMS

LECTURE 19
ECONOMIC DISPATCH
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© Be reading Chapter 6, sections 6.12 & 6.13.

® HW 9is due November 11, Friday.

® HW 10 is posted, due November 18, Friday.
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+ Since the load is variable and there must be enough
generation to meet the load, almost always there is more
generation capacity available than load

- Optimally determining which generators to use can be a
complicated task due to many different constraints:

= For generators with low or no cost fuel (e.g., wind and solar
PV) it is “use it or lose it”

= For others like hydro there may be limited energy for the year

= Some fossil has shut down and start times of many hours

- Economic dispatch looks at the best way to
instantaneously dispatch the generation
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+  Traditionally utilities have had three broad groups
of generators

= baseload units: large coal/nuclear; always on at max.

= midload units: smaller coal that cycle on/off daily

= peaker units: combustion turbines used only for several
hours during periods of high demand
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Distribution of wind power plants in the Lower 48 states (s of December 2016)
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The two main types of generating units are thermal
and hydro, with wind rapidly growing

For hydro the fuel (water) is free, but there may be
many constraints on operation:

= fixed amounts of water available

= reservoir levels must be managed and coordinated

= downstream flow rates for fish and navigation

Hydro optimization is typically longer term (many
months or years)
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Block diagram of thermal unit

Valve Torbing,

Boiler

To optimize generation costs we need to develop

cost relationships between net power out and operating
costs. Between 2-6% of power is used within the
generating plant; this is known as the auxiliary power. 10

EFFLUENT
HOLDING
TANK

- lant using an electrostatic precipitator
Figure 3.19 Typical modern coal-fired power pl e y
forg:miculale control and a limestone-based SO, scrubber. A cooling tower is shown for
thermal pollution control. From Masters (1998).

Source: Masters, Renewable and Efficient Electric Power Systems, 2004 11
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Source: http://images.pennnet.com/articles/pe/cap/cap_gephoto.jpg 12
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Typical efficiency is around 30 to 35% 1150+273

Most common fuel is natural gas
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Heat recovery steam
generator (HRSG)

Efficiencies of up to 60% can be achieved, with even higher
values when the steam is used for heating. Fuel is usually natural gas. ,
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- Generator costs are typically represented by up to
four different curves
= input/output (I/O) curve
= fuel-cost curve

= heat-rate curve
= incremental cost curve
- For reference
= 1 Btu (British thermal unit) = 1054 J
= 1 MBtu= 1x10°Btu
= 1 MBtu=0.293 MWh
= 3.41 Mbtu=1MWh 15
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« The IO curve plots fuel input (in MBtu/hr) versus
net MW output.
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+ The fuel-cost curve is the I/O curve scaled by fuel
cost. A typical cost for coal is $ 1.70/Mbtu.
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- Plots the average number of MBtu/hr of fuel input
needed per MW of output.
- Heat-rate curve is the I/O curve scaled by MW
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Plots the incremental $/MWh as a function of MW.
Found by differentiating the cost curve
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Generator cost curves are usually not smooth.
However the curves can usually be adequately
approximated using piece-wise smooth, functions.
Two representations predominate:

quadratic or cubic functions

piecewise linear functions
We’ll assume a quadratic presentation:

C(P;) = o;+fF;+ 7PGZi $/hr (fuel-cost)

dC;(Fsi)

IC(P;) = = B+2yP;; $MWh

Gi 20

A 500 MW (net) generator is 35% efficient. It is
being supplied with Western grade coal, which

costs $1.70 per MBtu and has 9000 Btu per pound.
What is the coal usage in Ibs/hr? What is the cost?

At 35% efficiency, the required fuel input per hour is
500 MWh _ 1428 MWh " I MBtu _ 4924 MBtu
hrx0.35 hr 0.29 MWh hr
4924 MBtu " Ilb  _547,1111bs
hr 0.009MBtu hr

= 4924hﬂx$1% ~8,370.8 $/hr or $16.74/MWh
T

21

Cost

21
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Assume a 100W lamp is left on by mistake for 8
hours, and that the electricity is supplied by the
previous coal plant and that transmission and
distribution losses are 20%. How coal has been used?

With 20% losses, a 100W load on for 8 hrs requires

1 kWh of energy. With 35% gen. efficiency this requires

lkth 1MWh>< 1 MBtu “ 11b
0.35 1000 kWh 0.29 MWh 0.009MBtu

=1.091b
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For a two generator system assume
Ci(Fg) = 1000+20F; + O.OIPGz1 $/ hr

Cy(P;y) = 400415F;, +0.03P2,  $/hr
Then

1C,(Pyy) = % =20+0.02P; $/MWh
G1

4CFe2) _154.0.06P,, SMWh
dp;,

1C,(Fg,) =

23
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If P, =250 MW and Py, =150 MW Then

C(250) = 1000+20x250+0.01x 250% =$ 6625/hr
C,(150) = 400+15x150+0.03x 150 = $6025/hr
Then

1C;(250) = 20+0.02x250 =$ 25/MWh

1C,(150) = 15+0.06x150 =$ 24/MWh
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The goal of economic dispatch is to determine the
generation dispatch that minimizes the
instantaneous operating cost, subject to the
constraint that total generation = total load + losses

Minimize Cp 2 Ci(Py)

i=1

Such that

m
ZPGi :PD +PLosses
=1

25

N
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This is a minimization problem with a single
equality constraint

For an unconstrained minimization a necessary (but
not sufficient) condition for a minimum is the
gradient of the function must be zero, Vf(x) =0

The gradient generalizes the first derivative for
multi-variable problems:

V()2 {M(x)’af(x)w. 6f(x)}

b
X, Ox, 0ox,,

26
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When the minimization is constrained with an
equality constraint, we can solve the problem using
the method of Lagrange Multipliers

Key idea is to modify a constrained minimization
problem to be an unconstrained problem

That is, for the general problem
minimize f(x) s.t.g(x)= 0
We define the Lagrangian L(x,A) =f(x)+ XTg(x)
Then a necessary condition for a minimum is the
VL, (x,,))=0 and VL,(x,A)=0 27
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For the economic dispatch we have a minimization

constrained with a single equality constraint

L(Pg,A) = iCt (Pgi)+ A(Pp— iPGi) (no losses)
i:

i=1

The necessary conditions for a minimum are
L(Pg.A) _ dC(Py

= )—ﬁ,=0 (fori =1tom)
OFg;i drs; |

m
Py - ZPGi =0 Equal lambda criteria

i=1

What is economic dispatch for a two generator
system: Py = Pgy + Fg, =500 MW and
Ci(P;) = 1000420P;, +0.01P2,  $/hr
Cy(Psy) = 400+15P;, +0.03P2,  $/hr

Using the Largrange multiplier method we know

AGFe) 5 2040028, -4 =0
dP,,
A6t 5 1540068, -4 =0
Py

500~ Py —Pgy = 0

We therefore need to solve three linear equations

2040.02P;, -4 =0
1540.06P;, -4 =0
500~ P; — Py = 0
(002 0 -17R;] [-20
0 006 —1| Py |=|-15
-1 -1 o] 2] [-500
[P, 312.5 MW
Py |= | 187.5MW
|2 26.2 $/MWh “

30
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- The direct solution only works well if the
incremental cost curves are linear and no generators
are at their limits

- A more general method is known as the Lambda-
iteration

= the method requires that there be a unique mapping
between a value of Lambda and each generator’s MW
output

= the method then starts with values of Lambda below and
above the optimal value, and then iteratively brackets the
optimal value

31

Pick A% and A" such that

2PGi(A) =Py <0 Y PG(A") =Py >0

i=1 i=1

While \AH - zL\ > ¢, Do

M= eaby2

m
If > P, (AM)— P, > 0, Then A" = 2M

i=1
Else A% =AM
End While

32

In the graph shown below for each value of Lambda,
there is a unique Pg; for each generator. This
relationship is the Pg;(A) function.
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Consider a three generator system with
IC,(P;) = 15+0.02P;;, =1 $/MWh
1Cy(By)= 20+0.01P;, =4 $/MWh
ICy(Py3) = 18+0.025P;; =4 $/MWh

and with constraint £, + Fy;, + F;; =1000MW

Rewriting as a function of 4, Pg;(4), we have

A-15 A-20

P.(A)=2"2 P, (1)=""2

a1 (4) 0.02 6 (4 0.01
A-18

P (A)=2"22

6 (4) 0.025

34

m
Pick 2% & 2"so > Py (A1) ~1000 < 0 and
i=1

m
> PG (A7) ~1000 > 0

i=1

Try A" = 20, then 3’ P;(20)~1000 =
i=1
AZ1S  A=20 A-18 1h00 = 670 MW <0
0.02  0.01  0.025

Try 2" = 30, then 3. P;;(30)—~1000 =1230 MW >0
i=1

35

Pick convergence tolerance & = 0.05 $/MWh

Then, iterate since ‘ﬂH - ﬂL‘ >0.05

M=+ aty2=25

Then since Y. P;(25) —1000 = 280 > 0, we set A7/ =25

i=1
Since [25-20] > 0.05
AM = (25+20)/2=225

3 P;(22.5)-1000 = —195 < 0, we set ¥ =22.5
i=1

12
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Continue iterating until ‘ZH — i ‘ <0.05

The solution value of A, A, is 23.53 $/MWh

Once A" is known we can calculate the Psi

Py, (23.5) = % — 426 MW

P, (23.5) = % =353 MW

Pi3(23.5) = % =221 MW

37

Generators have limits on the minimum and
maximum amount of power they can produce

Often times, the minimum limit is not zero.
This represents a limit on the generator’s
operation with the desired fuel type

Because of varying system economics
usually many generators in a system are
operated at their maximum MW limits.
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In the Lambda-iteration method, the limits are taken

into account when calculating Pg; (1) :
if PGi (j’) > PGi,max then PGi (j’) = PGi,max
if P (4) < Foimin then P (4) = Fy; in

13



